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Hybrid methods for the prediction of airframe noise involve a simulation of the near field 
flow that is used as input to an acoustic propagation formula.  The acoustic formulations 
discussed herein are those based on the Ffowcs Williams and Hawkings equation.  Some 
questions have arisen in the published literature in regard to an apparently significant 
dependence of radiated noise predictions on the location of the integration surface used in 
the solution of the Ffowcs Williams and Hawkings equation.  These differences in radiated 
noise levels are most pronounced between solid-body surface integrals and off-body, 
permeable surface integrals.  Such differences suggest that either a non-negligible 
volumetric source is contributing to the total radiation or the input flow simulation is 
suspect.  The focus of the current work is the issue of internal consistency of the flow 
calculations that are currently used as input to airframe noise predictions.  The case study 
for this research is a computer simulation for a three-element, high-lift wing profile during 
landing conditions.  The noise radiated from this flow is predicted by a two-dimensional, 
frequency-domain formulation of the Ffowcs Williams and Hawkings equation.  Radiated 
sound from volumetric sources is assessed by comparison of a permeable surface integration 
with the sum of a solid-body surface integral and a volume integral.  The separate noise 
predictions are found in good agreement. 

 

Nomenclature 
                        

        0c  = ambient sound speed  t = time 

 f = dimensionless frequency iU  = uniform, rectilinear surface velocity 

   ),( tf x
�

 = geometric surface function   iu  = local fluid velocity components 

),( yxG  = Green’s function iv  = surface velocity components 

)( ⋅H  = Heaviside step function ix  = spatial variable in medium at rest 
)2(

0H  = Hankel function β  = 21 M−  
i = the imaginary unit )( ⋅δ = Dirac delta function 

k = wave number ijδ  = Kronecker delta 

M = Mach number iη  = tUx ii +  

in̂  = components of surface normal n̂   ρ = local fluid density 

ijP  = compressive stress tensor ρ ′  = unsteady fluid density 

 p = unsteady fluid pressure  ω = 2π f , circular frequency  

p′  = sound pressure radiated to observer iξ  = Prandtl-Glauert transformation variable 

ijT  = Lighthill stress tensor 0)(  = subscript denotes ambient state of variable 
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I. Introduction 
YBRID methods have been in use for several years to predict airframe noise from the components of multi-
element high-lift wings [1 – 7] and undercarriages [8 – 10].  These hybrid methods involve a finely resolved 

computational fluid dynamics (CFD) simulation of the near field flow that is used as input to an acoustic 
formulation that predicts noise radiated to a given observer.  The acoustic formulations discussed herein are those 
based on Lighthill’s acoustic analogy [11], in particular, the Ffowcs Williams and Hawkings (FW-H) equation [12]. 

The FW-H equation, the most general form of the acoustic analogy, exactly formulates aerodynamic noise 
generated by a solid surface in arbitrary motion.  The formulation describes this noise in terms of three source 
distributions.  Two of these source terms are distributed on a surface, and are referred to in the literature as the 
“monopole term” and “dipole term.”  Both monopole and dipole contributions to the total noise can be determined 
by the integration of these terms on a solid surface.  The third source, or “quadrupole term,” is a volume distribution, 
and its inclusion in a noise prediction can be accounted for in two ways:  by integration of the quadrupole term itself 
throughout a sufficiently large volume surrounding the solid surface, or by integration of the monopole and dipole 
terms on a permeable surface that encloses such a volume.  Throughout this paper, the terminology “volumetric 
source” will be used to refer to any flow phenomena that give rise to a non-zero value for the volume (quadrupole) 
integral in the solution of the FW-H equation. 

In the use of acoustic-analogy based methods to predict noise from high-lift wing configurations, the FW-H 
equation is most typically applied without its quadrupole term.  The omission of this term is based on the 
assumption that the contribution to the total noise of volumetric sources outside a chosen integration surface is 
negligible.  Therefore, the choice itself of that integration surface becomes of critical importance.  Recent authors 
have published significant differences in radiated noise from high-lift wing configurations, depending on the 
location of the integration surface.  For instance, Singer, et al. [4] published results in which differences in 
amplitude and directivity were most pronounced between predictions for which the FW-H integration surface was 
coincident with the solid surface of the wing and those evaluated by integration on an off-body, permeable surface. 

 Current high-lift noise predictions are no exception, as will be demonstrated in Section III-B.  Important issues 
are raised by the observation that significant differences in radiated noise can result from the choice to integrate the 
FW-H equation on a solid or permeable surface.  If volume sources are truly negligible for high-lift noise prediction, 
then there is an internal inconsistency in the flow calculations that are currently used as input to the noise prediction 
process.  However, if volume sources are important for airframe noise prediction, then they must be appropriately 
incorporated into the development of future prediction tools. 

In the following section, the acoustic formulation is described.  The FW-H equation and its integral solutions 
are presented in a manner that applies to an impermeable surface that coincides with the solid body as well as 
porous, off-body surfaces.  Because the flow calculations used as input for this work are solutions of the two-
dimensional Navier-Stokes equations, the acoustic predictions are facilitated with a two-dimensional formulation of 
the FW-H equation [13]. 

In Section III-A, as a test case, a vortex in uniform flow is acoustically analyzed in regard to its movement 
through a FW-H integration surface.  Both surface and volume integrals are calculated and compared with respect to 
their contributions to the radiated sound.  An airframe noise prediction is then studied in detail in Section III-B.  A 
flow calculation for a high-lift wing configuration is used as input for surface and volume integration of the FW-H 
equation.  The volumetric source contribution to the total noise is accounted for in two ways:  by direct evaluation of 
the quadrupole source term of the FW-H equation within a suitable volume, and by integration on a permeable 
surface that encloses that volume.  The internal consistency of the CFD solution is then assessed by comparison of 
the radiated noise that is predicted by the permeable surface integration and by the sum of the integrals on the solid 
surface and within the volume. 

 

II. Acoustic Formulation 
The acoustic formulation used herein is a two-dimensional implementation of the FW-H equation in the 

frequency domain [13].  The differential equations that govern the propagation of sound radiated from a surface in 
arbitrary motion, as originally proposed by Ffowcs Williams and Hawkings [12], are briefly reviewed.  With the 
assumption of uniform, rectilinear motion, the integral solutions of these equations are then described in a two-
dimensional formulation in the spectral domain.  In the spectral domain, an exact formulation is available that avoids 
the “tail effect” associated with the two-dimensional solution in the time domain. 

H 
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A. The Ffowcs Williams and Hawkings Equation 
Ffowcs Williams and Hawkings [12] extended the work of Lighthill [11] and Curle [14] to the formulation of 

aerodynamic sound generated by a surface in arbitrary motion.  In a manner similar to that of Lighthill, they recast 
the equations of fluid motion in the form of an inhomogeneous wave equation.  A critical aspect in the development 
of the FW-H equation was the casting of certain flow variables as generalized functions.  Although their result in 
[12] was formally presented for an impenetrable surface, Ffowcs Williams and Hawkings clearly understood that the 
mathematical surface in their formulation did not have to be coincident with the solid body.  Formulations for 
permeable surfaces were published afterward, e.g., Dowling and Ffowcs Williams [15], Crighton, et al. [16] and 
Brentner and Farassat [17].  Because both solid and porous surfaces are considered in the present work, a unified 
presentation that closely follows that of Brentner and Farassat [17] is given below.  

Consider a closed, non-deformable surface defined by 0),( =tf x
�

, moving along a velocity vector v
�

 with 

Cartesian components iv .  The function f is defined such that 0<f  in the volume interior to the surface, and 

0>f  in the volume exterior to the surface.  Let f∇=
�

n̂  denote the unit vector, with Cartesian components in̂ , that 

is normal to the surface and directed outward into the fluid.  The fluid variables ρ  and iu  are local measures of the 

density and velocity, respectively.  The analogous quantities in the medium at rest are denoted by the subscript “0,” 
while perturbation quantities are denoted with a “prime” (’ ) superscript.  Ffowcs Williams and Hawkings developed 
their formulation by describing certain flow variables as generalized functions.  Such a function assumes its 
quiescent value interior to the surface, and retains its local value outside the surface (see [11, 17]). 

The FW-H equation can be written 
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where 0c  is the ambient sound speed, and 

)(,)(ˆ, 0
2
0 nnnnnijijiijijjiij vuvBvuunPLcPuuT −+=−+=′−+= ρρρδρρ                   (2) 

The Lighthill stress tensor ijT  contributes to the quadrupole term on the right-hand side of Eq. (1), while iL  

and B contribute, respectively, to the dipole and monopole terms.  )( fH  and )(⋅δ  respectively denote the 

Heaviside step function and the Dirac delta function.  The inviscid compressive stress tensor ijij pP δ=  is used in 

this work, where p denotes the unsteady part of the pressure, and ijδ  is the Kronecker delta.  The quantities nu  and 

nv  are, respectively, the components of the fluid and surface velocities that are normal to the surface 0=f , i.e., 

iin nuu ˆ=  and iin nvv ˆ= .  Throughout the paper, unless otherwise noted, the summation convention applies to 

repeated indices.  It is re-emphasized here that Eqs. (1) and (2) are valid whether the surface is on or off the solid 
body.  When the surface f is coincident with the solid body, the expressions for iL  and B are simplified by setting 

nn vu =  in Eq. (2). 

Denote by Txxx ],,[ 321=x
�

 the position of an observer exterior to the surface 0=f .  For an observer located in 

the far field, the acoustic pressure is ),(),( 2
0 tctp xx

�� ρ ′=′ , and the solution of the FW-H equation can be written in 

the form 

),(),(),(),( tptptptp QLT xxxx
���� ′+′+′=′                                                           (3) 

The three terms on the right-hand side of Eq. (3) represent, from left to right, the radiated sound due to the monopole 
(or thickness term), dipole (or loading term), and quadrupole source terms in Eqs. (1) and (2).  Integral 
representations for these three terms are dependent upon the particular choice of derivation.  Time domain solutions 
for Tp′  and Lp′  that are amenable to numerical implementation have been derived by Farassat and Succi [18].  A 

useful formulation for the volume integral Qp′  is derived by Farassat and Brentner [19]. 
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B. Two Dimensional Formulation 

In [13], Lockard derives a frequency-domain formulation for the FW-H equation in two spatial dimensions.  Eq. 
(1) is restricted to the Cartesian coordinate indices i = 1, 2, and solved with the appropriate two-dimensional Green’s 
function.  The resulting solution is then restricted to uniform rectilinear motion, i.e., )( tff Ux

�� += , where U
�

 is a 

velocity vector with constant components iU .  In this case, the two-dimensional FW-H equation is 
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where tUx iii +=η  and the derivatives iη∂∂ /  are identical to ix∂∂ / .   

   Upon application of the Fourier transform to Eq. (4), the resulting frequency-domain equation is solved with the 
use of the Green’s function   
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The spatial coordinates ix  and iy  are, respectively, the locations of the observer and the source point on the surface 

),( tf x
�

.  The symbol β  is the Prandtl-Glauert factor 21 M− , k is the wave number, i is the imaginary unit, and 
)2(

0H  is the Hankel function of the second kind, of order zero.  In the frequency domain, the sound radiated to the 

far field can be written 
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where the thickness and loading noise terms are given by 
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The variable �
�

 in the Green’s function is associated with a Prandtl-Glauert transformation (See [13] for details).  
The noise due to volumetric sources is given by the integral 
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The source terms in Eqs. (7) and (8) can be written 

[ ] njjiiijiijjjiiij uBnuUupLcpUuUuT ρρδδρρ =−+=′−+−−= ,ˆ)2(,)())(( 2
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The Green’s function derivatives in Eqs. (7) and (8) that are used in this study can be found in [19].  It is restated 
here that the term “volumetric source” is used to refer to any flow phenomena for which the integral in Eq. (8) is 
non-zero. 

III. Volumetric Source Contributions in Hybrid Method Predictions 

The frequency-domain, two-dimensional FW-H formulation discussed in the previous section is applied to two 
problems.  The first, a simple test case involving a vortex convecting in a uniform flow, yields useful information in 
regard to volumetric sources passing through a porous integration surface.  The second, a three-element high-lift 
airfoil configuration, is acoustically analyzed with the following purposes in mind: to determine the relative 
contribution of volumetric sources and thereby the internal consistency of the flow calculation, and to highlight the 
crucial importance of choosing an appropriate integration surface.  Note that all enumerated quantities in this study 
are expressed in a dimensionless fashion, according to the following normalization. 
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where f
~

, t~ , and p~  can be expressed in units of measure, and L is a characteristic length scale for the problem 

under consideration. 

A. Test Case:  Vortex in Uniform Flow 

To test the implementation of the volume integral in Eq. (8), a Taylor vortex [21] is allowed to convect through a 
FW-H surface.  The Taylor vortex is a solution to the Navier-Stokes equations, and would only radiate noise as the 
vortex decayed.  In the current test case, the vortex does not experience any significant decay over the time scale of 
the problem.  However, as the vortex passes through the FW-H surface, the vortex flow field makes a significant 
contribution to the surface integration terms in Eq. (7).  Therefore, the volume integration in Eq. (8) is expected to 
cancel the contribution from the surface integrals as the vortex passes. 

The mean flow Mach number is 0.75 and the peak vortex velocity is 0.15.  The pressure field is determined by 
Bernouilli’s equation.  The viscosity is chosen such that the vortex velocity is essentially zero at a radius of 5.  At 

0=t , the vortex is at the origin, as shown in the schematic in Fig. 1.  A square FW-H surface of length 10 on each 
side surrounds the vortex at 0=t .  Each side of the square is discretized with 51 points.  (Increasing the resolution 
to 101 points did not change the results.)  As the vortex convects downstream, the radiated sound is calculated in the 
shaded rectangular region in Fig. 1, given by }55{}255{ ≤≤−×≤≤ yx .  Fig. 2 shows the pressure field of the 

vortex as it passes the center of the domain.  Because the calculation is performed in the frequency domain, a period 
of 40 is used so that the vortex passes entirely through the FW-H integration region before another vortex is 
generated. 

Fig. 3 shows the directivity for observers at a radius of 100 when only the surface terms are included in the FW-
H integration.  In general, the error made by such a prediction that does not include the volume integration can vary 
significantly with the observer’s location.  Although a crude approximation, one could use the amplitudes in Fig. 3, 
scaled by the approximate vortex strength, to determine whether the error might be negligible in other problems.  

The time history for the sound radiated to an observer at )100,0(),( =yx  is shown in Fig. 4.  This time history is 

obtained by an FFT post-processing of the spectral output of the FW-H code.  The porous surface calculation is 
compared with the time history from the volume calculation as well as the sum of both calculations.  The volume 
integration does indeed cancel the surface integration during 3010 ≤≤ t , when the vortex is entirely within the 
“volume” of integration.  Fig. 5 shows the imaginary part of the integrand in Eq. (8).  Clearly, the positive (red) and 
negative (blue) contributions would cancel in the interior of the domain.  The truncation of the domain of integration 
at 5=x  produces the signal that cancels the contribution from the surface terms.  The truncation of the domain at 

25=x  produces the blip seen at t > 30.  Nonetheless, the desired cancellation of the signal from the surface terms 
has been demonstrated.  The significance of erroneous noise caused by hydrodynamic phenomena passing through 
FW-H surfaces will be case dependent.  However, an important point has been demonstrated.  Because volume 
integrations are costly, especially in three-dimensional problems, avoiding volume integrations requires that the 
permeable integration surface be carefully chosen to avoid significant flow features, e.g., wakes, that may exit 
through the surface. 

B. Case Study:  High-Lift Configuration 
The configuration under present consideration is a three-element high-lift wing profile, whose geometry and 

pressure field are shown in Fig. 6.  This unsteady Reynolds-averaged Navier-Stokes (URANS) calculation, in two 
spatial dimensions, simulates a Mach 0.2 flow at a mean-chord-based Reynolds number of 10 million.  The code 
CFL3D [22], developed at NASA Langley Research Center, was used for the computations.  This CFD calculation 
employs the SST k-ω turbulence model of Menter [23] with the production term set to zero within the cove region, 
following the work of Khorrami, et al [7].  The entire flow field contains approximately 1.3 million points, and is 
highly resolved in those areas that are important to the noise prediction process.  For example, a complex shear-layer 
flow is generated in the slat cove region, as shown in the density perturbation plot in Fig. 7.  This region contains 
approximately 400,000 points.  The density field in Fig. 7 shows the irregular acoustic radiation generated by the 
unsteadiness in the cove region.  The circular wavefronts of the propagating sound above the slat are evident, and a 
complex interference pattern is seen in the vicinity of the cove.  Interference as a result of reflections of acoustic 
waves from the airfoil surface is expected, but these waves may also be influenced by the flow in the cove. 

This URANS computation is used as input to the FW-H equation as formulated in Section III-B.  The time 
record for the acoustic predictions contains 2048 samples, spanning a dimensionless time of approximately 1.69.  
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Every third time step in the CFD simulation is used.  Integration of the FW-H equation is performed on solid-body 
and off-body surfaces, shown in Fig. 8.  Note that the off-body surface in Fig. 8 is located near the outer edge of the 
boundary layer in places where it may visually appear coincident with the body.  The vorticity field in Fig. 9 shows 
that there is a significant wake from the flap that cuts through the dashed portion or the porous surface in Fig. 8.  
Hence, there is the potential for erroneous noise sources to be generated as vortices in the wake pass through the 
surface, as demonstrated in the test case of the previous subsection.  The unsteadiness in the wake contains 
dimensionless frequencies below 75.  Fig. 10 shows a comparison between directivity patterns for 75<f  that 

result by integrating the FW-H equation on the solid and off-body surfaces in Fig. 8.  In addition, a FW-H 
calculation was performed using the porous surface P1 in Fig. 8 with the dashed portion of surface removed.  The 
observers are located on a circle located 5 chords from the airfoil.  Clearly, neglecting the portion of the porous 
surface around the flap produces better agreement with the solid surface result.  Attempts to add the volume 
contribution to the solid surface prediction were not entirely successful because only part of the wake could be 
included in the volume integration.  However, the difficulties with the flap wake are restricted to very low 
frequencies.  The inclusion of the flap region has almost no effect on the solution for 75>f . Therefore, the 

analysis is restricted to this mid-to-upper frequency range for the remainder of the paper. 

Fig. 11 shows two directivity patterns for the acoustic pressure that are predicted for 75>f  by integrating the 

FW-H equation on the two surfaces in Fig. 8.  The observers are located on a circle located 5 chords from the airfoil.  
There is a significant difference in both amplitude and directivity of the major lobes.  This difference is consistent 
with the previous work of other authors, e.g. Singer, et al [4].  The solution of the FW-H equation dictates that the 
difference between the two predictions in Fig. 11 must be the result of volume sources within the off-body, porous 
surface.  Fig. 12 shows the spectra from the two computations for an observer at 300 degrees, measured as a positive 
angle from the downstream direction.  Most of the discrepancy between the two predictions occurs in the frequency 
range 450250 << f , as detailed in Fig. 13.  In this frequency range, the acoustic wavelength is approximately the 

same size as the vortices in the cove. 

The internal consistency of the flow calculation can be assessed by comparison of the radiated noise that is 
predicted by the porous surface integral to the sum of the integrals on the solid surface and within the volume.  In 
Fig. 14, the same directivities as in Fig. 11 are plotted, with the addition of the directivity predicted by the sum of 
the FW-H integral on the solid-body surface combined with the integral over the volume between the solid surface 
and the porous surface P1 (blue line).  The agreement is good between the P1 surface integration (red line) and the 
sum of the integrals on the solid surface and within the volume (blue line).  Although these two predictions are not 
identical, as the FW-H equation dictates, the difference is small enough to be attributed to numerical error in the 
input flow simulation.  Furthermore, the spectra are in good agreement for all frequencies above 75, including the 
range 450250 << f , as shown in Fig. 15.  Clearly, this level of agreement establishes the internal consistency of 

the CFD solution, i.e., consistency with the Navier-Stokes equations.  Furthermore, this agreement indicates that a 
high-lift noise prediction that relies solely on surface pressure is inadequate for the frequency range of interest. 

IV. Concluding Remarks 
The relative importance of volumetric sources to the prediction of airframe noise has been the subject of a 

preliminary examination.  To the authors’ knowledge, this work contains the first direct calculation of the volume 
quadrupole contribution to the far-field noise associated with a high-lift wing configuration.  By establishing the 
internal consistency of the input flow calculation, it is now clear that the contribution of volumetric sources to the 
total noise is non-negligible in high-lift simulations.  Therefore, it is insufficient to predict the far field noise solely 
by the integration of pressure on the solid surface.  In order to appropriately account for these volumetric sources 
without resorting to the costly direct calculation of the FW-H volume integral, two steps in the acoustic prediction 
process must be judiciously balanced.  First, the spatial extent to which the near-field flow simulation is adequately 
resolved must be determined.  Secondly, the permeable FW-H integration surface must be carefully placed so that 
there is sufficient resolution to account for propagation of acoustic waves in the frequency range of interest, but 
without significant hindrance from an exiting wake.  As for the manner in which these results impact the 
development of airframe noise prediction tools, the exact nature of the physical phenomena occurring in the cove 
region that results in a significant volume contribution must be determined.  Further analysis will be required to 
assess whether simple models that neglect flow propagation effects can produce reasonable results. 
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Figure 2.  Vortex in uniform flow:  pressure field. 
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Figure 3.  Directivity of noise from FW-H surface 
integration only. 
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Figure 4.  Time history for observer at )100,0( . 

 

Figure 6.  High-lift wing profile:  pressure field. 
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Figure 1.  Schematic for vortex in uniform flow. 

Figure 5.  Vortex in uniform flow.  Imaginary part of the 
integrand in Eq. (8). 
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Figure 7.  Slat cove  region:  ρ ′ , perturbation density. 
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Figure 8.  FW-H integration surfaces. 
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Figure 11.  Directivity for 75>f  as predicted by 

integration on surfaces in Fig. 8. 
 

 

Figure 9.  Vorticity field, including flap wake. 
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Figure 10.  Directivity for 75<f  as predicted by 

integration on surfaces in Fig. 8. 



 
American Institute of Aeronautics and Astronautics 

 

10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p′ cos(θ)
-3E-05 -2E-05 -1E-05 0 1E-05

-2E-05

-1E-05

0

1E-05

Solid Surface
Porous Surface 1
Solid Surface + Quadrupole (P1)

p′
si

n(
θ)

Figure 14.  Directivity, same as in Fig. 11 with addition of 
directivity predicted by summing FW-H integrals on solid 
surface and within volume. 
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Figure 12.  Spectra from predictions in Fig. 11, for one 
observer at 300 degrees. 
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Figure 15.  Spectral comparison for two of the predictions in 
Fig. 14. for 450250 << f .  Observer is at 300 degrees. 
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Figure 13.  Same plot as in Fig. 12, for the frequency 
range 450250 << f . 




